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Abstract

This numerical work is an attempt to build accurate and continuous response surfaces of two degree-of-freedom

vortex-induced vibrations (VIV) of flexibly mounted cylinders for a wide range of transverse and in-line natural

frequencies. We consider both the structure and the flow to be two-dimensional. The structure has a low mass damping,

with the transverse and in-line mass ratios as well as the transverse and in-line damping coefficients being equal. The

goal is to capture the sensitivity of the response to the change in the natural frequencies of the structure. The system is

studied for a wide range of transverse natural frequency within the synchronization region. The extent of variation of

the in-line natural frequency is chosen to be larger than the one of the transverse natural frequency in order to favor

multi-modal responses. No preferred frequencies are emphasized within the intervals of study. The numerical technique

uses a multi-element stochastic collocation method coupled to a spectral element based deterministic solver.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Often, only the transverse motion of a cylindrical bluff body subject to VIV is considered in numerical or

experimental studies to further simplify the problem. This is supported by the fact that the amplitude of vibrations

along the in-line direction is generally much smaller than along the transverse direction when both in-line and transverse

natural frequencies of the oscillator are equal. More recently, it was reported that the effect of the in-line motion on the

transverse motion can be significant when the natural frequency ratio f nX
=f nY

departs from one (Sarpkaya, 1995; Dahl

et al., 2006). In this case, the presence of the in-line X-motion can cause a severe change in the flow pattern behind the

cylinder and might even enhance the transverse Y-motion. The purpose of the present study is to explore the effects of

the coupling of the two motions through the interplay of the oscillator natural frequencies. Nevertheless, we will avoid

simply collecting an ensemble of numerical simulations for an arbitrary number of possible scenarios, i.e. evaluating the

system response for a finite set of structural parameters. Instead, we wish to use a method that will provide us with a

continuous representation of the response as a function of the variable parameters. It will hopefully allow us to

accurately predict the response for any set of parameters within the domain. Moreover, we wish to generalize the

approach and treat the natural frequencies of the oscillator as random quantities; the ‘‘random’’ term, here means, that

the frequency values are uncertain within certain ranges. This situation may arise due to defective manufacturing
e front matter r 2008 Elsevier Ltd. All rights reserved.
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processes or complex operational environments. The numerical technique we choose couples a stochastic collocation

method, based on the generalized Polynomial Chaos (gPC) representation, to a spectral element based deterministic

solver. The power of the gPC representation resides in its ability of assigning a given probability distribution to the

parameters (here, the natural frequencies of the oscillator) and to propagate its effects, through the model, to the

numerical solution (here, the VIV response). The gPC model then provides fast and efficient approximations of

the response and its statistics for any set of natural frequencies within the study interval. The main advantage of the

method from a numerical point of view is to reduce the computational cost compared to brute force methods such as

Monte-Carlo methods. From a mathematical point of view, the advantage of the method resides in the solid theoretical

framework that authorizes an efficient sensitivity analysis of the response.
2. Numerical method

We will first introduce the general framework of the stochastic collocation method. Then we will describe the

technique adapted to our fluid-structure interaction problem and briefly present the deterministic solver on which it

relies.

2.1. Stochastic collocation method

The gPC representation is a non-statistical method used to solve stochastic differential (SDE) and partial differential

equations (SPDE) (Spanos and Ghanem, 1989) and has been used for numerous applications (Ghanem, 1999; Xiu and

Karniadakis, 2002; Lucor and Karniadakis, 2004; Lucor et al., 2007). It is a spectral representation of a random process

in terms of orthogonal basis functions; the spatial and temporal evolutions of the basis coefficients providing

quantitative estimates of the modeled random process solution. It is based on the introduction of the geometry and the

coordinates into a probabilistic framework in which the uncertainty of the input parameters and the solution can be

quantified. It represents second-order stochastic processes X ðyÞ parametrically through a set of independent random

variables fwjðyÞg
N
j¼1;N 2 N, through the events y of a random event space O. The approach is similar to the variational

finite elements formulation for deterministic mechanical problems (Ghanem and Spanos, 1991).

In the following, we will consider a stochastic process X ðyÞ that varies over a two-dimensional space ðx; yÞ:

X ðx; y; yÞ ¼
X1
k¼0

X̂ kðx; yÞFkðvðyÞÞ. (1)

Here fFjðvðyÞÞg are orthogonal polynomials in terms of a known zero-mean random vector v:¼fwjðyÞg
N
j¼1, satisfying the

orthogonality relation hFiFji ¼ hF2
i idij . For our application, we will only keep a finite set of random variables, i.e.

fwjg
N
j¼1 with No3, and a M finite-term truncation of Eq. (1). Due to its tensor-structure form, a complete basis has

M ¼ ðN þ PÞ!=N!P! terms, with P being the highest polynomial order in the expansion. We will drop the y- and spatial

dependence of v in the following for notation simplicity. We have

X ðvÞ ¼
XM�1
k¼0

X̂ kFkðvÞ, (2)

and the X̂ k are the coefficients to determine. The efficiency of the representation depends on the choice of the

appropriate parametric family of random variables. Indeed, there exists a close relationship between the type of the

orthogonal polynomials fFg and the probabilistic law rðvÞ of the random variables v. More details on approximating of

various class of random variables and correspondence with various class of polynomials and gPC are given in

Schoutens (2000) and Xiu and Karniadakis (2002).

Nevertheless, for discontinuous dependence of the solution on the random input data, gPC may converge slowly or

fail to converge for long-time integration. This situation arises when the solution is very sensitive to changes in the

parameters (e.g. stochastic bifurcation). In this case, the global solution converges slowly even for high order P. One

way to circumvent the problem is to decompose the parametric space into NO non-overlapping smaller sub-domains Ol .

Subsequently, in each element we generate a new random variable and apply the gPC technique again. Since the degree

of perturbation in each sub-domain is reduced proportionally to its size, we can maintain a relatively low polynomial

order and number of terms Ml in each sub-domain. The spectral representation reads:

X ðvÞ ¼
XNO

l¼1

XMl�1

k¼0

X̂ l;k Fl;kðvÞ IOl
, (3)
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where the indicator variable IOl
is defined such as: IOl

¼ 1 (l ¼ 1; 2; . . . ;NO) if v 2 Ol or IOl
¼ 0 otherwise. We will not

describe the multi-elements gPC formulation in more details as it is not the point of the paper. Nevertheless, we can say

that its numerical implementation is greatly facilitated in the case of random variables with uniform distributions

combined with Legendre polynomials. We refer the interested reader to Wan and Karniadakis (2006b) and we conclude

that the method can maintain a desired accuracy by adaptively decomposing the random space as needed.

After solving for the coefficients X̂ k, cf. Eq. (2) or X̂ l;k, cf. Eq. (3), we hold a representation which can be

apprehended as a response surface providing with the sensitivity of the solution to the variability of the different

parameters. It is then possible to perform a number of analytical operations onto this explicit representation. Moments

as well as probability density function (PDF) of the solution can be evaluated. Due to the orthogonality of the modes,

the moments can be easily computed. The mean solution is contained in the expansion term with zero-index. The

second moment, i.e., the covariance function is given by a linear combination of the modal fluctuations (Ghanem and

Spanos, 1991).

The ‘‘non-intrusive’’ approach or stochastic collocation approach (Tatang et al., 1997) of the gPC application does

not require any substantial modifications to the existing deterministic solver. It consists in projecting directly the

stochastic solution onto each member of the orthogonal basis chosen to span the random space. The X k random

coefficients take the following form:

8k 2 f0; . . . ;M � 1g; X̂ k ¼
hX ðvÞFkðvÞi

hF2
kðvÞi

. (4)

The inner product is based on the measure rðvÞ of the random variables:

hf ðvÞgðvÞi ¼

Z
y2O

f ðvÞgðvÞdPðyÞ ¼
Z
O

f ðvÞgðvÞrðvÞdv, (5)

with rðvÞ denoting the density of the law dPðyÞ with respect to the Lebesgue measure dv and with integration taken over

a suitable domain O, determined by the range of v. We recall that hFkðvÞi ¼ 0 for k40 and the denominator hF2
kðvÞi can

be tabulated prior to the projection. The evaluation of Eq. (4) is equivalent to computing multi-dimensional integrals

over the domain O. Different ways of dealing with high-dimensional integrations can be considered depending on the

prevalence of accuracy versus efficiency (Keese, 2005). A convenient approximation consists in numerical quadrature

evaluated for some chosen points. When the number of grid points in multi-dimensions N becomes too large, grids

based on full tensor products of one-dimensional grids are too costly. An alternative are sparse quadratures (Novak and

Ritter, 1999) which require less quadrature points. The sparse quadrature based on Smolyak algorithm (Smolyak, 1963)

has the advantage of remaining accurate with a convergence rate depending weakly on N. In this study, we use

numerical quadratures of Gauss- and Gauss-Lobatto-type by full tensor products as our number of random dimensions

N is small. We insist on the fact that the deterministic solver will compute/provide X at those known quadrature points

and not at randomly selected locations. The total number of quadrature points Nq to use depends on the regularity of

the function to integrate. As there is no way of knowing a priori how smooth the solution X will be, we choose to use a

minimum number of Nq ¼ ðPþ 1ÞN quadrature points for the estimation of all M coefficients.

2.2. Two degree-of-freedom structural model

The nondimensional equations of motion, based on a reference length D (cylinder diameter) and a reference velocity

U (inflow velocity), that are solved are:

€X þ 2zXoX ðyÞ
qX

qt
þ o2

X ðyÞX ¼
1

2

CDragðtÞ

mX

; €Y þ 2zYoY ðyÞ
qY

qt
þ o2

Y ðyÞY ¼
1

2

CLiftðtÞ

mY

, (6)

where oX ðyÞ ¼ 2pf nX
ðyÞ and oY ðyÞ ¼ 2pf nY

ðyÞ represent the natural frequencies of the oscillator along the X- and

Y-direction respectively. The y-dependency indicates that the natural frequencies are considered uncertain within the

intervals study. The forcing involves the nondimensional time-dependent drag CDragðtÞ and lift CLiftðtÞ coefficients,

computed iteratively by the flow solver. The hydrodynamic forcing will act as the coupling between these two equations.

For all examples considered in this paper, the mass ratios of the structure are: mX ¼ mY ¼ m ¼ rs=rf D2 ¼ 2, (rs is the

structural linear density and rf is the fluid volumic density) and the damping ratios are: zX ¼ zY ¼ z with z ¼ 0 or

z ¼ 3% depending on the case under consideration. Dimensional frequency values f̂ n may be computed with a proper

scaling: f̂ n ¼ ðf nUÞ=D. The reduced velocity of the oscillator is Un ¼ U=ðf̂ nDÞ.

The hydrodynamic loads in Eq. (6) are computed by a 2-D Navier–Stokes direct numerical simulation (DNS) solver,

N�kTat, based on a spectral/hp element method (Karniadakis and Sherwin, 2005). A Newmark integration scheme is

used to solve for the structure. This flow-structure interaction solver was used previously for various challenging VIV
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Table 1

Natural frequency and reduced velocity parametric ranges for Case-B

f nX
f nY

UnY
f nX

=f nY

Sub-domain 1 ½0:127; 0:382� ½0:191; 0:255� ½3:928; 5:236� ½0:5; 2�
Sub-domain 2 ½0:127; 0:382� ½0:127; 0:191� ½5:236; 7:856� ½0:667; 3�
Sub-domain 3 ½0:382; 0:573� ½0:159; 0:223� ½4:488; 6:281� ½1:714; 3:6�
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applications, among others (Lucor and Karniadakis, 2003; Lucor et al., 2005; Dong and Karniadakis, 2005). A two-

dimensional rectangular grid of size ½ð�22D; 55DÞ � ð�22D; 22DÞ� in the (x, y)-plane and made of 708 triangular

elements (Lucor, 2004) with Jacobi polynomial order p ¼ 11 in each grid cell is used. This spatial resolution insures the

presence of (at least) 4 computational nodes within the flow boundary layer developing at the wall at Re ¼ 1000. Our

chosen nondimensional temporal resolution requires at least 10; 000 time iterations per period of oscillation. All

computations start from the same initial condition where the cylinder is released from rest with zero velocity in a fully

developed flow field. Time-statistics are typically collected over approximately 500 to 1500 (when necessary)

nondimensional time units, i.e. 100 to 300 oscillation periods. In the following, we focus on the representation of

natural frequencies following uniform distributions, so that only bounded variability ranges are considered and no

physical values are ‘‘favored’’ (in a probabilistic sense) within each interval. Legendre polynomials are chosen to

represent the response. For stochastic processes that require more than one random dimension, multi-dimensional

Legendre polynomials are built in a tensor-like form.

Two generic cases are considered in this study corresponding to different parametric ranges. In the first case

(Case-A), we take f nX
¼ f nY

¼ f n þ sw where w follows a uniform distribution with zero mean and unit variance. The

parameters f n and s are constant parameters referring to the mean value and half the width of the support of the

natural frequency, respectively. They are chosen in such a way that f nX
and f nY

are uniformly distributed in

½0:1114; 0:3024�. This implies that only one uncertain parameter is considered and f nX
=f nY
¼ 1 always. The damping

factor is z ¼ 0. This case will be used in the following as our reference case. In the second case (Case-B), the multi-

element approach is used and we distinguish among NO ¼ 3 non-overlapping and non-conforming elements. This

domain decomposition has been chosen based on our experience of the system. We will comment and suggest some

other possible choices later. In each sub-domain Ol , we define the natural frequencies as f l
nX
¼ f l

n1
þ sl

1w
l
1 and

f l
nY
¼ f l

n2
þ sl

2w
l
2, where w

l
1�2 are chosen to be finite independent identically-distributed (iid) uniform random variables

with zero mean and unit variance. The parameters f l
n1�2

and sl
1�2 are constant and chosen in such way that f l

nX
and f l

nY

are uniformly distributed according to Table 1. This setup implies that the natural frequencies can both vary

independently and that the frequency ratio f nX
=f nY

in the entire domain is within ½0:5; 3:6�. A more realistic damping

factor of z ¼ 3% is used for this case.

Those two cases are treated with the combined numerical approach described in Sections 2.1 and 2.2 and some

preliminary results are presented in the next section. Any output of the DNS simulations can be treated as a random

field and decomposed onto the gPC basis following Eqs. (2) and (3). In the following, we will focus mainly on the

cylinder response statistics and its frequency content.

It is worth mentioning that gPC representations of complex and highly nonlinear processes are sometimes inefficient

in capturing the right behavior of the system. This is particularly true for long time integration of stochastic systems

characterised by a limit cycle oscillation response. For these cases, it was noticed that a spectral decomposition of

the solution in terms of global basis exhibits severe limitations (Beran et al., 2006; Wan and Karniadakis, 2006a). In the

present study, we propose to circumvent this problem by always considering time-averaged statistical moments of the

simulated response and loads as functions of the uncertain parameters, instead of decomposing the time-dependent

turbulent pressure and velocity fields themselves.
3. Results

Continuous representations of the cylinder response and loads are constructed with Legendre polynomials.

To this end, the collocation procedure described in Section 2.1 needs to evaluate the deterministic solution

at some discrete quadrature points in the parametric domain of interest. The DNS solver is therefore run for

each known sample point, corresponding to a specific pair of natural frequencies, and time-statistics are collected for

each case.
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3.1. Case-A

Here, a multi-element gPC approach is employed along the lines introduced by Wan and Karniadakis (2006b). Here,

we use seven Gauss-Lobatto-quadrature points in each sub-element at which we discretely sample the DNS solution

and then up to P ¼ 5th order Legendre polynomials to reconstruct the response.

Fig. 1 presents the time traces of the cylinder vertical displacement for different natural frequency pairs. Those signals

are quite representative of the possible scenarios encountered in our computations (both Case-A and Case-B). In the

first case, the motion eventually settles down to some regular single pattern after some time. This reflects on the cylinder

trajectory as well. In the second case, there is a switching among regions characterized by small or large amplitude

response that correspond to multiple trajectory patterns. The frequency of occurrence of these regions can be low

and/or very irregular. Those cases are the most difficult to simulate and require long time integration. Finally, the last

signal is quite irregular at a small time scale but exhibits some stationarity for a long time window. This diversity implies

that the temporal statistics collected for each case will not bear the same level of regularity and confidence. In other

words, the temporal statistics might not be fully converged for some cases. This will obviously affect the overall

accuracy of our study.

Fig. 2 presents the gPC response of the average 10% highest amplitude of the X- and Y-motion against

the UnY
reduced velocity (based on f nY

). The symbols correspond to the DNS deterministic samplings. The dotted lines

delimit the computational sub-domains. The thin dashed curve with circles shows the one degree-of-freedom (1-dof)

response of the same system and is used as a reference. We emphasize that a maximum amplitude of 0:6D is what is

usually reported in the literature and commonly accepted for 2-D direct numerical simulations of 1-dof VIV

(Evangelinos, 1999). We notice that allowing in-line motion enhances the maximum transverse cylinder motion relative

to transverse-response only, with a 30% increase of the highest amplitude from around 0:6D to 0:78D. Moreover the

maximum transverse amplitude of the 2-dof case does not coincide with the one of the 1-dof. We also notice that the

gPC interpolation is more continuous and accurate for the Y- than the X-motion, in particular for the UnY
� ½5; 7�

range. Interestingly, the distribution of the in-line amplitude closely follows the same peaks than the transverse

amplitude.
1

0.5

0

-0.5

-1

Y

1990 2000 2100 2200 2300 2400 2500 2600

1

0

-1

Y

1990 2000 2100 2200 2300 2400 2500 2600 2700 2800

1

0

-1

Y

1990 2000 2100 2200 2300 2400 2500 2600 2700 2800

Fig. 1. Time traces of the cylinder transverse Y-motion for different natural frequency pairs ðf nX
; f nY
Þ.
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3.2. Case-B

Fig. 3 shows the response surface of the average 10% highest amplitude of the Y-motion vs. the reduced velocity UnY

and the natural frequency ratio f nX
=f nY

. This way to present the results is in the light of the experimental work of

(Dahl et al., 2006). The collocation procedure described in Section 2.1 uses 6 Gauss-quadrature points along

each direction for the sub-domain 1 (bottom left). It uses 82 for the sub-domain 2 (bottom right) and 72 samples for the

sub-domain 3 (top). This totals 149 DNS simulations. The deterministic solver is called for each quadrature point on



ARTICLE IN PRESS
D. Lucor, M.S. Triantafyllou / Journal of Fluids and Structures 24 (2008) 1284–12931290
the map, corresponding to a specific chosen set of parameters (represented by white dots in the figure). The total

number of quadrature points per sub-domain was chosen in order to preserve a certain level of resolution depending on

the smoothness of the corresponding response surface. However, the multi-element method described in Section 2.1

does not insure exact continuity of this surface across the sub-domains boundaries. This can be seen in Fig. 3 where we

use P ¼ 4th order Legendre polynomials to reconstruct the response. A measure of the error of the representation is

obtained by comparing the exact DNS and gPC reconstructed solutions at the sampling points. In this case, the

L2 norm of the error is within 5% accuracy for sub-domains 1–3 and within 15% accuracy for sub-domain 2. The

strong gradients due to parametric bifurcation in the latter explains why the representation somewhat under-predicts

the response for large reduced velocities and small frequency ratios. This error can be reduced by increasing P but

spurious end-effect oscillations will appear.

The first finding is the increase of the transverse amplitude response compared to the case with no X-motion and

Case-A. Indeed, the white line materializes the 0:6D amplitude for 1-dof only response. It surrounds a light color region

where the crossflow response is large. In this tilted and elongated region, the maximum amplitude is close to one

cylinder diameter D for certain combinations of natural frequency and reduced velocity. This corresponds to a 70%

increase of the highest amplitude compared to the 1-dof only response and a 25% increase compared to Case-A. In

particular, the response is large around UnY
� 7 which is consistent with recent 3-D experimental results (Dahl et al.,

2006). Nevertheless, this large response for 2-D flow is still below those 3-D results. It is worth mentioning that the

maximum amplitude signal within the domain temporarily reached a value of 1:47D. Moreover, it is clear that

increasing the in-line to transverse frequency ratio caused a shift in the peak amplitude response to increasingly higher

reduced velocities. This is also in qualitative agreement with Dahl et al. (2006). It was also reported in earlier

experiments (Sarpkaya, 1995; Dahl et al., 2006), that two distinct response peaks appear for frequency ratio close to

two. At this point, our level of resolution does not allow to check the presence of this double peak. It is also worth

mentioning that the damping and mass ratios in Dahl et al. (2006) were slightly different along each direction.

Interestingly, for UnY
45:5, we notice that the location of the maximum response for a given reduced velocity follows a

linear trend. In this case, we have f nX
=f nY
� 0:4�UnY

� 0:5. We do not have a conclusive explanation for this

phenomenon at the present time but we think it is something worthwhile to pursue.

Another concern relates to the distribution of the possible responses that the system provides within this parametric

range. The answer lies in the solution PDF that we construct from the response surface representation. A solution

ensemble is generated from Eqs. (2)–(3) and we use a kernel-smoothing density estimate with a Gaussian kernel and

an optimal bandwidth (Wand and Jones, 1995) to get the PDFs. Fig. 4 shows the PDFs of the X- and Y-motion

amplitude. Here, up to P ¼ 5th order Legendre polynomials are used within each sub-domain and a large data set

(45M) is generated for each PDF. As expected, we observe that the cylinder response is more sensitive along the
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figure clarity.
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transverse than the in-line direction. Moreover, the PDFs are skewed with longer tails on the side of low

amplitudes. The peaks in the distributions indicate the presence of dominant scales within the chosen parametric

ranges, leading to the concept of most probable solutions. In particular, we notice that amplitude responses in the

0:5D and 0:65D ranges are most likely to happen for the Y-motion, while 0:2D and (to some extent) 0:3D amplitudes

prevail for the X-motion. From the distribution, we can estimate that there is only a � 23% chance to get a

transverse amplitude 40:75D, but a � 60% chance to get a transverse amplitude 40:6D (maximum of the 1-dof only

response).

Now, we turn our attention to the spectral content of the response. Fig. 5 shows the response surface of the Y-motion

dominant oscillation frequency f Y=f nY
. In some cases, there were multiple dominant frequencies. We only show the

largest magnitude frequency component in this case. This time, the gPC representation is very accurate with a L2 norm

of the error within 5% accuracy for a choice of P ¼ 5th. For most of the frequency ratios, the leading frequency

increases with increasing nominal reduced velocity in agreement with Dahl et al. (2006). There exists a large portion of

the map where f Y=f nY
� 1. On the figure, we have bounded this region (on the right) by a white solid line

(f Y=f nY
¼ 1:2) and (on the left) by a white dashed line (f Y=f nY

¼ 0:8). This gives an idea of the extent of the lock-in

region. If we compare this region with Fig. 3, we notice that it partially coincides with the region of large response.

More importantly, it shows that the synchronization region becomes wider as nominal frequency ratio is increased.

Interestingly, there is no higher harmonics leading the Y-motion oscillation frequency.

This is different when we look at the frequency content of the lift coefficient CLift. Indeed, if several natural

frequencies lie within the excitation band of frequencies, a multi-frequency wide-band response is obtained and

high modes are excited. These high modal responses show significant energy at the expected Strouhal frequency

as well as at higher harmonics. These phenomena have been observed in measurements from 3-D field experiments,

but only recently were they linked to the fatigue of the structure (Vandiver et al., 2006; Dahl et al., 2007). Fig. 6

illustrate the response surfaces of the CLift high-frequency component contributions. Here, the power spectrum density

has been integrated over a finite range and normalized by the total power spectrum of the signal. A value close to

unity indicates that most of the energy content resides within this frequency range. Each graph corresponds to a

different range defined to tightly bound the harmonics of the crossflow natural frequency of the structure. This time,

we notice that the higher harmonics contribution to the CLift coefficient is far from being negligible for some para-

metric ranges. In particular the 3rd harmonic is dominant for relatively low reduced velocity and large frequency

ratio (cf. Fig. 6(c)). This is again consistent with the results of Dahl et al. (2006) and Jauvtis and Williamson (2004).

We also observe the presence of a strong (440%) 4th harmonic for higher reduced velocity and frequency ratio close

to 3 (cf. Fig. 6(d)).
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4. Conclusions

This is a first attempt to apply recent numerical stochastic collocation techniques to 2-dof VIV of flexibly mounted

cylinders. The goal is to capture the response sensitivity to the change in both transverse and in-line natural frequencies

of the oscillator. The system is sampled for a wide range of natural frequency within the synchronization region,

totalizing 149 2-D flow-structure DNS. No preferred frequencies are emphasized within the intervals of study. We then

derive a continuous response surface of the system response. Here are our main conclusions in agreement with 3-D

experimental results (Dahl et al., 2006). We have noticed an increase of the transverse response compared to the case

with no in-line motion and the 2-dof case with equal natural frequencies. There exists a large parametric region in which

the average 10% highest transverse amplitude is close to 1D for certain combinations of natural frequency and reduced

velocity. While this corresponds to a 70% increase compared to the 1-dof only, it is still below 3-D experimental results

with maximum amplitude as high as 1:35D and above. The response is particularly large for UnY
� 7. The spectral

analysis of the response dominant frequency permitted to identify the extent of the lock-in region that coincides with the

region of large response. We have found that the maximum response was obtained due to lift forces locked to the

transverse motion but with significant 3rd harmonic frequency component. Indeed, response surfaces of the lift high-

frequency component have shown nontrivial contributions from the 3rd and 4th harmonics for some parametric ranges.

Besides, it is clear that increasing the in-line to transverse frequency ratio widened the synchronization region and

caused a shift in the peak amplitude response to increasingly higher reduced velocities.

Moreover, for sufficiently large transverse reduced velocity, we have noticed that the frequency ratio for which the

response is maximum follows a linear trend. Finally, we have also produced distributions of the transverse and in-line

motion amplitudes. The distributions indicate the presence of dominant scales within the chosen parametric ranges,

leading to the concept of most probable solutions.

Differences with 3-D experimental results are as follows: our maximum response region was obtained for a frequency ratio

close to 2.25; this value is lower for the experiments. Moreover, it was reported in earlier experiments, that two distinct response

peaks appear for frequency ratio close to 2. Our level of resolution does not allow to verify the presence of this double peak.
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It is known that 2-D simulations of 1-dof VIV show inherent limitations when compared to 3-D results. Hopefully,

this study will help quantifying the level of trust that one can give to 2-D numerical simulations of 2-dof VIV. Finally,

those results will guide us to pursue a, computationally more costly, three-dimensional study of the same phenomenon.

In our future work, the impact of the change in the in-line natural frequency on the phase between the transverse

response and the in-line response will be discussed and linked to flow visualizations.
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